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Abstract
Improving a machine learning (ML) model is difficult without ML knowledge. In this paper, we
propose a model wherein user-constructed rules can work together with a learned model to achieve
better outcomes than either working alone. Informed by expert interviews, we introduce a user
interface and a query language that enables end-users to perform an error analysis of pre-trained
models. This interface then enables the users to explore their dataset and help to gain better insights.
Then, users can create and iteratively refine rules targeted at areas of poor model performance.
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1 Machine Learning: Everyone wants, only some can use

Many people want to apply machine learning (ML) to their domain, but not everyone
understands how ML works. As a result, a burgeoning market for pre-trained models has
emerged. In this market, a small group of ML practitioners train and supply models to
technical, but non ML-savvy, domain experts who use them in workflows. For example,
financial firms use third-party models to classify incoming financial documents attached to
customer emails.

While the users of these pre-trained models are technical experts in their own domains,
they often do not have the knowledge to train and improve the models themselves. This
creates a disconnect: these users are the key stakeholders of their model’s output, but they
must rely on third parties to make any improvements related to performance.

In this paper, we propose a new system that enables end-users to work together with
ML. In our system, end-users construct rules that can be used to tactically overwrite an
ML model’s decision when the model’s confidence is low. This allows end-users to continue
treating the learned model as an unmodified black box—as they do today—but begin to
directly put their domain knowledge to use towards performance improvement. We enable
this by letting users craft rules. Rules are logical statements about an (input, output)
pair from a learned model that can override that model’s choice of output. Unlike typical
ML systems, rules are declarative, relatively easy to comprehend for end-users, and efficient
for capturing domain knowledge [?].

The following are example use cases in different data domains:

Text Classification. A text classifier trained to detect spam might learn to automatically
flag emails containing the phrase Housing Refinance, which could be appropriate across
a general population but incorrect for employees at a mortgage company. Our system
would permit members of this mortgage company to visually observe that Housing
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Figure 1 Interface of Toby: a user can explore and overwrite ML results based on their observation.
Each rule becomes a version at Toby and Toby provides an interface to aid version controls (a)
rule version-control panel (b) accuracy plot of users’ versions (c) model’s decision and confidence
distribution (d) rule editor (e) input previews table with a filtering feature

Refinance was a problematic classification feature and create a custom rule to override
the learned spam model for this special case.
Image Classification. In practice, many image classifiers tend to heavily rely on pre-
trained neural network weights from benchmark datasets. This can over-bias classification
in ways unanticipated by a downstream practitioner. For example, an “occupation
guessing” model might pick up on eyeglasses and over-bias results toward outputs such
as librarian, simply because the training dataset had an abundance of stock imagery
playing to the archetype. Our model would enable a practitioner to associate the
intermediate feature of eyeglasses with the mis-classification and craft a rule to suppress
this edge case.

Research has shown that end-users who are domain experts can craft well-performing
rule-based systems, but it is very time consuming [?, ?]. To simply rule construction, we use
the presence of a black-box ML model to our advantage: guiding rule creation by applying
the model to labeled datasets and using an interactive error analysis system to prioritize rule
creation.

Informed by expert interviews, we designed a mixed initiative system of machine learning
and rule-based heuristics, Toby (Tweaking yOur model By using Your domain knowledge)
that focuses on authoring post-processing rule incorporating their own domain knowledge.

Toby provides an user interface where users can explore their dataset and author post-
processing rules. We propose a data model that contains results from a model and features
of individual inputs in a relational database.

Our paper makes the following contributions:
In-depth interviews with machine learning experts for insights on designing a machine
learning debugging interface.
A rule-based programming language that enables end-users to specify rules as a post-
processing step of a machine learning model, using features of a data type (e.g., text,
image) independent of the machine learning model.
A user interface that ties rule creation to interactive error analyses showing the impact of
users’ rules and rule editing history. Our user interface is tied with a matching query and
supports smart auto-complete queries that are of interest to the user. Users can simply
click button to see corresponding data.
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2 Related work

We discuss previous work on debugging machine-learning models, with specific focus on
mixed-initiative systems of intelligent systems and visualizing machine learning systems in
the HCI community.

Rule-authoring tool for end users

Previous work has focused on building rule-based tools to facilitate task automation. These
tools allow [?, ?] end-users to program automation of different systems such as their geo-
location and email. There are tools to aid automation of enterprise and customer relations [?,
?, ?]. Users can customize their marketing strategy using the tools’ rule-authoring interface.

Our rule-authoring system for ML shares a common theme with email filtering since both
overwrite results from ML models. Email users can write simple actions (e.g., move to a
folder, archive) for individual messages based on their attributes such as sender and subject
line. Users write email filters that overwrites results of ML-based spam filters. Similarly, our
system overwrites results of users’ ML models. Our system allows users to incorporate both
ML model decisions and confidence in those decisions in their rule-authoring.

Mixed-initiative systems of intelligent systems

Recent work in intelligent systems combines two intelligent systems to capture the benefits
of both [?]. In the program-by-example domain, users can get their desired program
by disambiguating programs [?] and also providing sub-programs [?]. Mixed-initiative
systems in machine learning rely on various initiatives including rule-based heuristics [?] and
crowdsourcing [?]. Our work combines ML-based and rule-based systems to enhance the
accuracy of ML models.

Programming ML

Some work extend programming paradigms in the area of machine learning and let ML
engineers to debug their model [?]. Data-programming [?] provides a new approach to
programmatically generate training sets. While data-programming improves a ML model in
a pre-training phase by generating richer training set, our work focuses on a post-training
phase by letting users author rules based on the results of a ML model.

Interactive exploration of ML results

Researchers have proposed several ways to explain model behavior to end-users [?, ?, ?].
For example, novel visualizations show a ML model’s strength and weaknesses to help users
understand the model’s performance [?, ?, ?]. Another approach is model-agnosticism [?, ?, ?],
which fits a statistical approximation to understand model decisions.

Previous work provides valuable insight into the workings of models, but does not enable
end-users to act on this understanding with action that improves performance. Furthermore,
modern deep learning techniques often pose significant interpretability challenges to experts,
let alone end-users [?].

PLATEAU 2019
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3 Expert Interviews

We conducted semi-structured interviews with seven ML practitioners (2 females, 5 males,
mean age=26) to understand how experts work to improve the result of an ML model. Our
goal is that by learning ML experts’ common practices, we can design an interface that
enables end-users to do so.

Among our interviewees, five of them worked in the industry, and the remaining two were
academic researchers. All used machine learning as part of their work across the domains of
document analysis, education, and health care.

Each interview was 45 minutes long and driven by a questionnaire that posed questions
related to (1) model design workflow, (2) model tuning workflow, and (3) how the participant
incorporates domain knowledge into the structure of their model. While approaches varied,
and many standard maxims (“just add more data”) were present, so too were common themes
that lend themselves toward adaption for end-user empowerment.

It begins with understanding the data

Experts reported spending a significant amount of time exploring their data before con-
structing of a model. They often start by inspecting basic statistics of a dataset such as the
mean and deviation. One interviewee said, “One of the common mistakes of novice machine
learning engineers are they spent too much time thinking about building model but not much
time on input and understanding of data itself.”

Domain knowledge plays an important role in the data exploration phase. Since domain
knowledge provides an opportunity for ML experts to do a sanity check of their model
performance, it helps experts to notice if their model is working as desired and gives feedback
of early stage of model designing. An interviewee said, “Knowing domain knowledge does
greatly help designing a ML model such as how to pre-process and format the training set”.
For example, knowing that a mean of 98.0 is a human body’s temperature provides the human
modeler an intuition that 32.0 than if the numbers were void of semantics. Interviewees list
different ways of gaining domain knowledge such as exploring datasets and reading research
papers. Modelers sometimes consult domain experts (e.g. course instructor, financial expert,
medical doctor) if the domain is a specialized area.

A final data exploration procedure is understanding the format of the dataset. Questions
they ask while probing the formats are 1) how data is created 2) how data is stored and
3) what role data cleaning and wrangling play in the data that will be experienced by the
model.

Data partitioning is a common strategy

All experts reported common strategies and usefulness of dividing data into a custom partition.
They said it is necessary to partition and group data into not only train, test, and validation
sets which are in randomized manner but also sensible manner based on different data
attributes. For example, one of the experts who is working on health care divides their
dataset into different races to ensure the model’s fairness: “it is important to know if my
model works fairly (..) One of my practice is dividing my dataset into demographics across
different races to test fairness.”

Echoing the findings of previous work [?], how ML practitioners evaluate the performance
of a model depends on the need of their task. For example, one practitioner who worked on
medical data said, “For us, false positive is not as severe as false negative.” The evaluation



S. Park et al. 23:5

method used also depends on the availability of the data data. One interviewee said, “we are
testing on toy data which possesses the same characteristics of our target domain since there
is no existing data in this domain.” Another interviewee said: “we tried our two candidate
models on customers and A/B test to find which is better.”

It also turns out there is no super tool or interface that is being commonly used among
ML practitioners. However, they write programming scripts (mostly python among the
interviewees) for their ML tasks.

4 Design Goals

From our literature review and expert interviews, we identified the following design decisions
for a post-processing rule-authoring interface for machine learning.

Facilitate sensemaking with easy dataset exploration

One main design goal of Toby is easy navigation of different attributes due to interviewees’
need to explore data carefully. Data exploration includes not only viewing the input data
before training, but also the data as it relates to the trained model (e.g. how the model
classified inputs that contain certain keywords) [?]. In order to provide an easy and expressible
outlet to explore and access data of interest, we provide a query feature. We have designed our
rule-authoring interface to enable queries on any subset of a dataset and the model’s results
on that subset. Having this query feature would help not only exploring interesting subsets
of datasets easily but also explore and overwrite rule on data partition that is mentioned
during our expert interviews.

Track performance of rules

Another goal of Toby is to allow domain experts to leverage their expertise by writing
rule-based heuristics while avoiding the intractability of purely rule-based systems. Although
rule-based heuristics are often almost guaranteed to hold true, a purely rule-based system
would have too many heuristics to reasonably keep track of. Once our system has helped
a user navigate to a region of the dataset in which a common category of error seems to
dominate (for example, a mis-classification from one label onto another), it permits them to
craft targeted rules applying only to these error regions.

5 TOBY: a tool for crafting rules to improve classifiers

This section introduces the interface of Toby (Figure 1). Toby provides features for domain
experts to explore a dataset and craft rules based on their observations and domain knowledge.
We starts this section with a usage scenario to describe how a user could interact with Toby.
We then discuss Toby’s key features in detail.

5.1 Usage Scenario
Sam works in a bank and is responsible for handling customer emails. She uses a classifier that
puts incoming emails into one of the three categories: complaints, inquiries, and applications.
The classifier was created by an engineer in the bank a while ago. Over time, Sam has found
that many emails were mis-classified. Sam has no experience with machine learning, but she
has been doing this job for a while and has a good sense of what an email for a category
generally looks like.

PLATEAU 2019
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Sam collects a set of emails, and puts the email body and their actual categories in an
Excel sheet. She uploads the data and the classifier model - a text file that is a Naive Bayes
classifier using bi-grams as features - to Toby.

Comparing the classifier output with the actual category data, Toby shows that the
current classifier has a 75% accuracy (Figure 1.(b), the first data point in the line chart).
Below that, Toby shows three bar charts. Each chart is a histogram showing for all the
documents predicted as a certain category, how confident the classifier is for the predictions,
and if the predictions are correct. From these charts, Sam found that many emails were
falsely classified as "inquiry". Even when the classifier is 100% confident, the majority of the
emails it classified as "inquiry" should be something else.

Sam clicks on the red bar in the middle bar chart for "inquiry" (Figure 4) to inspect
the falsely categorized emails. Toby supports an editor to let users write queries to explore
the data (Figure 1.(d)). After Sam clicks on the red bar, Toby automatically brings up the
corresponding data in a document pane (Figure 1.(e)) and fills the query editor with the
query that generated this selection.

Sam found that most of the emails falsely classified as inquiries are actually complaints.
She also notices that those emails contain words that often appear in the complaints emails
in her department, such as "slow" and "delay". To correct this, Sam clicks on to the "Write
rules" tab (Figure 1 at d) in the editor which lets her construct a query and assign a class
to the data returned by the query to form a rule (Figure 2). She builds a rule that sets all
emails predicted as inquiry and containing the word "slow" or "delay" to complaints, and hits
a "Overwrite" button to apply this rule.

Toby applies Sam’s newly set rule, and compares the final result to the actual category data
again to generate a new accuracy value. Toby updates the accuracy line chart (Figure 1.(b))
with a second data point and shows in text how the rule impacts the result (Figure 1.(a),
and Figure 2 at the bottom). Sam’s new rule actually makes things worse. She realizes that
her rule might be too aggressive, so she modifies her rule to apply only the model confidence
is lower than 90%. She reapplies the rule. This time the accuracy increases!

Sam sets up a few more rules following the similar procedures - identifying the classifier’s
weakness through the prediction bar charts, exploring the falsely classified emails through
queries, setting a rule and testing the rule by shuffling the data to ensure its robustness. Her
rules now work together with the machine learning model made by her engineer colleague to
become a new ensemble model that performs better than either the rules or the ML model
working alone.

5.2 Key features
Data model

Toby’s UI is backed up by a data model that includes the input data, the model’s predicted
values and confidence, and the actual values. Every time when the user modifies a rule, Toby
stores the predicted values to support showing the accuracy tuning history.

The last thing we added to Toby’s data model is what we called "data feature" that allows
users to construct rich, meaningful queries for a type of data. Note that this "data feature" is
not the features that the ML model uses to make decisions, as ML model features sometimes
do not make sense to an end-user (such as vectors or pixel values). Here, data feature is
related to the type of data and is independent of the ML model used.

In our prototype, Toby supports data feature for two types of data: text and images of
handwriting. For text, words is the obvious data feature choice. Users are able to write
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Figure 2 Toby users can author overwriting rules with simple AND and OR logic (top). Each rule
becomes a version. As a user creates a new version, Toby displays the summary of the new version
so the user can check the impact of the rule (bottom).

Figure 3 Toby data model

queries such as “documents that model is less than 80% confident and contain the word
"TIFF" and "VGA"“. For images of handwriting, we choose the data feature to be the number
of connected components in the image. This enables users to write rules such as “assign
handwriting that have two connected components to be the number 8“ while users are almost
impossible to describe this rule using raw pixel values. The data feature is created as the
user uploads the dataset into Toby. In the UI, Toby has a document pane that displays the
data model using a table (Figure 1.(e)).

Prediction bar charts

Toby displays a bar chart for each class of the model with the frequency on the y axis and
confidence on the x axis (Figure 1.(c)). We design the prediction bar charts to help users
identify under what situation it is better to use their domain knowledge to make a decision
rather than using the ML model’s prediction. For example, if below a certain confidence
value the ML model’s accuracy is worse than random guesses (i.e. 33% in our usage scenario),
than instead of randomly guessing, make the decision using rules crafted by a domain expert.

Rule-authoring mechanism

As described in the usage scenario, a rule in Toby consists of a query and a value to assign
to data returned by the query. User-defined rules are applied after the ML model runs. We
used jQuery QueryBuilder [?] for the authoring interface. Users can build a query using the
query editor directly, or they can generate a query by clicking on the prediction bar charts

PLATEAU 2019
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Figure 4 Toby plots the dataset with respect to the confidence probability of the decision (left).
As a user clicks the “explore the data” button, Toby auto-completes the query and one can query
the corresponding data (right). In this example, it will show the documents that are mis-classified
as complaints with 90% of confidence.

(Figure 4) or the result summary text (Figure 2 at the bottom). Users can further modify
the auto-generated query to add more searching criteria.

Version control of user-generated rules

We represent rules as versions in Toby and provide features of version-control systems such
as tracing difference between versions and reverting versions. Each rule is equivalent to a
version in Toby. Toby displays a summary of the impact of each version compared to the
previous version. The summary shows how many data are classified as each class and the
difference between the current and previous version. As users craft rules, they can cancel
rules if the rule is not working as intended (Figure 2).

Saving queries

Reflecting findings from our interviews, we add a query-saving feature so that users can save
queries they want to keep track of. Users can flexibly define the query e.g. data containing
features X & Y, or even manually select data of interest.

6 Conclusion & Future Work

Machine learning is a critical piece of today’s technical infrastructure, but the fine-tuning of
learned models is often either difficult or out-of-reach. For experts, a lack of mature tooling
and labeled data makes model tuning difficult despite the technical knowhow. For non-ML
experts, learned models are often a black box.

In paper explores a system intended to broker a productive compromise between learned
models and rule-based systems. One in which users can take a trained model, inspect its
performance on real-world data, and then refine its behavior by applying rules that can elect
to override the model.

Rules enable explicit domain-specific knowledge to be added in environments without
enough data to learn them implicitly. They allow error hot-spots to be quickly targeted in
production environments while better models are built offline. And they provide a mechanism
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for integrating model tuning with the traditional manner by which most programmers learn
to approach problems.

In future work, we intend to further explore new categories of rules and objects that
could be incorporated into our system, such as posterior constraints, feature boosting, and
more complex predicates. We believe there is value in extending an interactive environment
such as ours to model training and run-time monitoring.
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