
Machine-o-Matic: a Programming Environment
for Prototyping Digital Fabrication Workflows
Jasper Tran O’Leary
University of Washington, Seattle, WA, USA
jaspero@uw.edu

Nadya Peek
University of Washington, Seattle, WA, USA
nadya@uw.edu

Abstract
Digital fabrication tools for Makers have increased access to manufacturing processes such as 3D
printing and computer-controlled laser cutting or milling. However, these machines and their
associated software tools are difficult to modify and adapt beyond common case tasks. How can we
enable Makers to design and operate machines with other applications? To facilitate custom machine
design and control, we propose a domain-specific language for formalizing fabrication workflows
as programs. This language, called Machine-o-Matic, provides an interface for authoring workflow
and for defining machine configurations in software. Programs in the language compile to custom
firmware for controlling physical machines. We demonstrate key features of Machine-o-Matic and
highlight the future possibilities for verifiable fabrication using a programming languages approach.

2012 ACM Subject Classification Human-centered computing → Interactive systems and tools;
Applied computing → Computer-aided manufacturing; Software and its engineering → Domain
specific languages

Keywords and phrases Digital fabrication, programming languages, user interfaces, prototyping

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.23

1 Introduction

At a global scale, the rise of the Maker movement and academic makerspaces has engaged
more people in using digital fabrication tools than ever before. Tools for digital fabrication
include CNC machines, which we use to to refer to any computer-controlled machine that
users can program through computer software. Common examples of CNC machines include
general-purpose machines such as laser cutters, 3D printers, and CNC mills, as well as
machines for niche use cases. In addition to physical CNC machines, there is a growing
ecosystem of open-source software tools to support specific parts of the fabrication pipeline,
for example: optimizing 3D model meshes for fabrication [8], slicing 3D model meshes into
toolpaths [2], and designing printed circuit boards [1]. With the increased availability of
affordable CNC machines comes the promise of diverse applications of digital fabrication,
where individuals who are not expert machine users can adapt CNC machines and software
to their own workflows.

1.1 Workflow: a Fabrication Task Made up of Digital and Physical
Steps

Let us define a workflow as going from a concept, through various stages of design and
physical fabrication, to a completed prototype for product. Any digital fabrication workflow
will incorporate various machines, materials, software tools, hardware modifications, file
types, etc. that are strung together. For example, a workflow for something as simple
as 3D printing a metal figurine, a model is made in CAD, exported as an STL, sliced in

© Jasper Tran O’Leary and Nadya Peek;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1825-0097
mailto:jaspero@uw.edu
mailto:nadya@uw.edu
https://doi.org/10.4230/OASIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

23:2 Machine-o-Matic

Figure 1 Example Workflow. A user positions sheet material underneath a plotter (1) and
photographs the material to extract a QR code (2). They then look up the code in a database to
retrieve a text annotation for the given sheet (3). Finally, they create a toolpath for drawing the
annotation (4) and generate machine instructions for moving the machine (5).

a printer-specific slicer, exported as G-code, transferred to the machine, interpreted by
controllers into motor moves of a motion platform and extrusion head, removed from the
bed of the printer, sintered in an oven according to the material’s temperature specs, then
cleaned and polished for final use. Other applications will require a different assembly of
steps in software, hardware, and material handling.

However, digital fabrication infrastructure is static—difficult to modify and adapt. There is
no formalization for connecting different parts of a workflow. At the machine level, modifying
CNC machine typically involves reprogramming controller boards that are hard-wired to
support machine controls for engineering use cases. Even for users with technical expertise
in machine building, modifying controllers to change kinematics, or to add functionality, is
“hacky” and involves rewriting firmware. With software tools, it can be difficult to reason
about inputs and outputs for different parts of the pipeline. For example, a user who is 3D
printing will often need to tinker with the 3D model’s design, the conversion of the model to
a mesh, the slicing of that model, and the machine instructions (G-Code) generated from
the slices—all at the same time. This static infrastructure poses a prohibitively high barrier
to a diverse set of users who need to do tasks not commonly supported by software tools,
but who do not have prior technical background in fabrication.

In particular, there are few, if any, ways to formally verify that output from one part of
the workflow will work as input for another part of the workflow; for example, ensuring that
a GCode file will not cause a spindle to exit the work envelope, or ensuring that a 3D printer
extruder never revisits a place with material already deposited. Even if we implemented
these simple safety checks ad-hoc, they might not cover other workflows that are developed
by different users in the future. With current tools, if the user has modified the printer, or
wishes to generate machine instructions from sources besides a 3D model, they must tinker
with machine instructions, export parameters, and model data all at once. All too often,
the solution to these issues is for users to “just know” if and when hacks to machines and
software tools will work.

1.2 Reimagining Fabrication Workflows as Formal Programs
In this paper, we define users as people who are using digital fabrication machines and
software in hobbyist, academic, or professional contexts besides mass manufacturing settings.
These users may wish to apply the precision of fabrication machines in contexts such as art,

J. Tran O’Leary and N. Peek 23:3

biology laboratory work, cooking, packaging, and many others. We envision these users as
tinkerers who are comfortable designing for themselves and with learning and using software.
However these users need not be comfortable with understanding or designing machines, or
with established practices for fabrication workflows.

We now ask: what are the needs of these new fabrication practitioners? What are the
tools that can meet these needs? We hypothesize that it is not making mass-manufacturing
machines more efficient, but developing novel machines and ways of interacting with those
machines. These machines and their workflows need to be robust, reliable, reconfigurable,
and easy to learn.

Rather than proceed with further optimizations to static fabrication infrastructure, we
envision fundamentally changing how people create fabrication workflows. We propose
representing fabrication workflows as programs, where machines, materials, data, and controls
are all first-class citizens in an interactive programming environment. To facilitate
programming, modifying, and controlling parts of the workflow, we propose developing
Machine-o-Matic: a domain-specific programming language for integrating disparate tools
into a cohesive setting. Critically, users would be able to define machines in software based
on the criteria they need, adding in sensors, data, and other features within the context
of a programming environment that affords static checking, programming by example, etc.
The language, Machine-o-Matic, would be embedded within Javascript so that users would
still be able to use the features of a general-purpose programming language in addition to
Machine-o-Matic’s capabilities.

Figure 2 Machine-o-Matic System Architecture. A user programs a machine configuration in the
DSL. Code in the DSL corresponds to physical implementation. The system compiles the configuration
to controller firmware which then actuates the physical machine.

2 Example Scenario

To conceptualize how a workflow would be represented in the Machine-o-Matic language (see
Figure 1), we use a concrete example of a CNC plotter (see Figure 2 for a visual representation
of a plotter) instrumented with a web camera to label sheet material in an specified location.
The motivation behind this workflow is that a business might want to use a plotter to draw
some sort of annotation directly onto a piece of sheet material. For example, if the business
gives the sheet material to a fabricator, it could be useful to have assembly instructions or
other relevant information included directly on the material that the fabricator would work
with. An advantage of using a plotter to draw annotations, as opposed to printing stickers, is
that the user can pull the latest information from a database before drawing the annotation,
whereas stickers would need to be reprinted.

CVIT 2016

23:4 Machine-o-Matic

Listing 1 Defining a machine configuration in the DSL
let plotter = new Machine ({

Axis(x): [Motor(x1), Motor(x2)],
Axis(y): Motor(y),
ToolUpDown : Motor(t),
step: 0.03048 ,
kinematics : (x, y) => {

return [[Motor(x1), Motor(x2)], Motor(y)]
}

});

However, such a workflow of using a plotter to annotate sheet material is largely out of
reach because of the difficulty of hacking existing software tools to create new workflows.
Without Machine-o-Matic the user must focus their efforts around providing accurate machine
instructions to the plotter. Currently, plotters, 3D printers, and many other machines work
by requiring the user to use custom software to generate machine instructions. These existing
tools, both proprietary and open-source, support only common-case tasks, such as slicing
a 3D model into layers and printing each layer, or drawing a vector file as is. In our case,
the user needs to generate the machine instructions for drawing the annotations in a way
that existing software does not support, which means the user would have to generate the
instructions on their own. Requiring the user to do this is error-prone, as it is easy to generate
machine instructions that are not valid, or that may cause the machine to behave in an unsafe
manner on some input data. Further, the burden lies on the user to create ad-hoc scripts
that pass output from one application to another, such as a Python script for reading QR
codes, or a drawing application to modify any design files. Such an approach is largely only
accessible to enthusiasts who are familiar with hacking fabrication hardware and software.
In addition, the resulting solution with this approach will likely be platform-dependent and
difficult for others with the same workflow to reproduce.

In contrast, Machine-o-Matic allows the user to define the entire workflow in a single
program that can then interface with the physical machine. The language handles several
concerns—processing image data, looking up data from a database, generating machine
instructions, and controlling the plotter—all in one integrated development environment.
By using constructs in the language to represent these concerns, we abstract away low level
concerns and allow the user to focus on programming the high level workflow. Our example
workflow, illustrated in Figure 1 is as follows:

1. Place a sheet of material with a QR code sticker on it under the plotter.
2. Use a web camera mounted above the plotter to take a picture the material.
3. Read the QR code and look up the appropriate annotation for the current sheet of

material.
4. Generate machine instructions for writing the annotation with the machine’s writing tool.
5. Position the writing tool 100mm to the right of the sticker and plot the annotation onto

the sheet.

We now introduce the Machine-o-Matic DSL and show how the user would express the
workflow above in the language.

J. Tran O’Leary and N. Peek 23:5

Listing 2 Declaring objects for sensor input, material data, and computer-aided manufacturing
(CAM)
let camera : WebCamera = new WebCamera ({

port: "/ dev/tty. usbserial1402 "
});
plotter . addSensor (camera);
let materialTable : Table = loadTableFromDatabase ();
let profileCAM : CAM = new CAM ({ pathType : " profile " });

3 System Architecture

Machine-o-Matic comprises three parts (see Figure 2):

Machine-o-Matic Language: a domain-specific language for formally describing a
machine configuration of motors, sensors, tools, and instrumentation, as well as support
for debugging and verifying machine behavior before runtime. The DSL is embedded
within a larger host language such as Javascript so that users can take advantage of
general purpose computation and data processing that the host language affords.
Controller Firmware Compilation: a means of compiling machine configurations in
the DSL into firmware to upload to the machine’s control board. This firmware translates
movement commands into physical motor pulses for the given machine configuration.
Graphical Front End: a browser-based visual tool for quickly assembling and simulating
machines, for synthesizing parts of programs in the DSL using graphical techniques, and
for inspecting and visualizing stages of the workflow.

Defining a Machine Configuration

In the Machine-o-Matic DSL, the user first defines a machine configuration as shown in
Listing 2. With this code, the user defines a plotter machine configuration as the variable
plotter, where the Machine object itself takes an object of machine parameters using
Javascript’s object notation. To instantiate the machine, the user provides information about
the machine’s motors, for example Axis(x) : [Motor(x1), Motor(x2)]. This statement
indicates that the machine can move along the x-axis, such movement along the axis is
determined by the movement of two motors, named x1 and x2. The machine configuration
will eventually be used to generate controller board firmware, so the user must indicate how
many millimeters of displacement result from one step of the motor (step: 0.03048) to
aid with kinematic calculations. If the user does not know this information, they can leave
a hole in the program (???) and the system will probe the motor’s movement at runtime,
prompt the user to measure the displacement, and synthesize a correct replacement to the
hole based on empirical measurement. The kinematics function describes how a desired
position in terms of x and y coordinates should map to movements in the motors. Here,
moving on the x-axis requires moving both the x1 and x2 motors in parallel, while moving
on the y-axis requires turning only the y motor. More complex machines may require less
trivial kinematic functions. The user also declares a non-axis degree of freedom ToolUpDown,
which simply uses two positions on the motor named t to extend and retract the writing
instrument.

CVIT 2016

23:6 Machine-o-Matic

Listing 3 Defining a machine action that can be called during runtime
plotter . action (" locateAndPlotAnnotation ", () => {

let image : Image = camera . readImage ();
let annotationPoint : Vector3 = image. findQRPoint ()

. translateX (100);
let annotationForSheet : String = materialTable

.query(image. decodeQR ());
let toolpath : Toolpath = profileCAM

. generateToolpath (annotationForSheet);

this. moveTo (annotationPoint);
this. ToolUpDown .down ();
this.plot(toolpath);
this. ToolUpDown .up ();

});

Defining Data Sources and User Interactions

In addition to defining a machine configuration in software, the user can add and integrate
sources of data. In Listing 3, the user declares a variable camera as an interface to a web
camera mounted above the plotter, and connects that as a sensor to the plotter. The
user also imports a database that maps the QR codes on the stickers to the appropriate
text to be plotted on the corresponding sheet of material. They then instantiate a CAM, or
computer-aided manufacturing object to transform text into movement paths for the plotter.
Each of these variables is declared with a type, for example let toolpath : Toolpath,
which affords static type checking at compile time.

Defining Tool Actions

Next, as shown in Listing 3 the user defines a single action, locateAndPlotAnnotation that
the machine can perform, which the user can then call after definition. The machine can
perform actions at any time with behavior varying on both the machine’s and the program’s
state, similar to methods in object-oriented programming. Critically, this action integrates
image data, database lookups, toolpath generation, and custom motor movements within a
single function call.

In the above code, the machine images the material sheet and processes image data.
Using the data, the machine (this) moves the tool to the correct location, actuates the
motor to lower the writing tool, plots the toolpath, and re-raises the tool. For every step,
the language employs a type system to check for common compile-time errors.

Using a programming language allows programmers to handle disparate concerns in the
fabrication process—data, user interaction, and machine control—all in a single environment.
Unlike passing potentially error-prone output from one program to the next, the DSL allows
users to verify high-level constraints before machines begin running, all in a clear syntax
that can easily be shared and modified. Critically, a language allows us to use standard
program analysis techniques to verify the behavior of the workflow. For example, we can
check to make sure the machine instructions produced are compatible with the machine
that will run them. We can also enforce invariants such as requiring that the tool never be
moved outside the machine’s work envelope, or that all machine instructions generated from
a data source contain no null values. Finally, Machine-o-Matic provides a graphical front

J. Tran O’Leary and N. Peek 23:7

Figure 3 Machine-o-Matic Front End. Left: direct manipulation interface for machine creation.
a) menu-based editor for motor parameters, b) machine simulation, c) corresponding .mom program, d)
GUI controller for moving the physical and simulated machine. Right: High-level scripting interface
with code (left side) and visual traces (right side).

end for composing programs in the language, including designing machine configurations
(see Figure 3, left) and visualizing stages of the workflow (see Figure 3, right).

Controller Firmware Compilation
CNC machines have controller boards that translate machine instructions such as GCode
into electrical pulses that actuate the motors and move the tool head. Typically, machine
kinematics are “baked in” the physical controller board and are difficult to modify. Seemingly
simple modifications like adding another motor or adding another machine instruction usually
require rewriting low-level firmware, along with purchasing specialized hardware.

With Machine-o-Matic, a user can instead specify high-level machine configurations details
in the DSL, and then the system compiles the specification down to low-level firmware code to
upload to a non-machine specific controller board such as an Arduino. For example, given the
plotter from the code above, assume that annotationPoint is (50mm, 30mm), that is, 50mm
on the x-axis and 30mm on the y-axis. For the machine to move the tool to this location
given its current position, the machine’s controller needs to know the machine’s kinematics,
which motors control which axes, and the motor step rates, how much displacement along
the axis results from one step of the motor. Because the user provides this information when
instantiating plotter, Machine-o-Matic compiles the information to firmware that the user
can upload to the controller board. Now, whenever the user wishes to modify their machine,
they need only change the machine configuration in the DSL, recompile, and reupload, rather
than spending hours or days reconfiguring machine firmware.

As opposed to low-level configuration files common in CNC control frameworks e.g.
[10, 11, 20, 21], a programming language enables portable software-defined hardware, as
opposed to hardware-defined software, which is currently the norm with machine making. We
draw inspiration from other hardware description languages such as Verilog for electronics
[22], ROS Unified Robot Description Format [18], and openFrameworks for cross-platform
graphics [17]. These languages allow designers to build at various levels of abstraction
before diving into the implementation details. Our goal is not to supplant existing control
frameworks, but rather to provide a more robust way to design and deploy control firmware,
including compiling to existing configuration files, rather than expecting users to write them
by hand.

CVIT 2016

23:8 Machine-o-Matic

4 Related Work

We draw from literature in robotics, programming languages, and HCI for fabrication. Our
work adds to concepts in fabrication literature such as interactive [23], mobile [19], and
personal [7] fabrication. At the same time, we acknowledge lineages of making that lie
outside of Western and technology solutionist views of fabrication [6, 14, 5] Our goal is to use
techniques from existing fabrication, robotics, and graphics literature to empower a wider
group of people to build their own fabrication infrastructure.

Machine-o-Matic adds to an emerging thread of work that uses techniques from program-
ming language research to reconceptualize the fabrication process. For example, Nandi et al.
designed a functional programming language for representing constructive solid geometries
(CSG) commonly used in CAD modeling for fabrication [16]. By representing CSGs as a
programming language, users can verify that their designs are fabricatable, compile to mesh
models, and even decompile meshes into CSGs. Du et al. similarly propose a system for
reverse engineering CSG representations of static meshes [9]. At the machine level, the Tool
Path Language project proposes a replacement for G-Code for machine instructions, and
employs a clearer syntax and integration with Javascript [3]. These previous works target one
part of the fabrication pipeline, whereas Machine-o-Matic aims to provide a programming
language to represent the entire process.

Other systems use programming language techniques to drive interaction in a way that
would be useful for Machine-o-Matic. Mayer et al. feature a language that lets users directly
manipulate artwork, or the source code that generated it, while having both representations
synchronized to new changes [15]. This is particularly useful for debugging and tinkering
with fabrication data, which is often highly visual. Lerner et al. feature program construction
through assembling polymorphic blocks that fit together only with other blocks of appropriate
types in the language [13]. Jacobs and Buechley represent fabricatable objects as programs,
[12], while Agrawal et al. contribute a visual Scratch-based programming environment for
creating 3D models [4]. I wish to expand upon these areas by extending these techniques
for both representing machine configurations, as well as in framing novices’ thinking about
machine building. By programatically tying together steps of the fabrication process, Machine-
o-Matic would enable verification and real-time debugging, rapid machine reconfiguration,
and abstractions that lower the barrier for novices and increase expressivity for experts.

5 Next Steps and Open Questions

As we further develop Machine-o-Matic, we would like to solicit feedback from the research
community on the following challenges:

Co-Designing a Language with Practitioners. How can we best design the con-
structs in a language that make sense to potential users? Having already redesigned the
language once, we recognize the value of iterative prototyping and feedback from users,
but also must also must also take a stance on what should and should not be included.
Making Use of Techniques in Programming Languages. How can we leverage
contemporary ideas in programming languages literature to empower Machine-o-Matic?
Given our recasting of fabrication workflows as programs, we would like to leverage
existing techniques for analyzing programs. In other words, what will the “smarts” for
this language be?
Advocating for Common Infrastructure in Fabrication Research. In HCI, fab-
rication research tends to highlight new interaction techniques with machines, rather than

J. Tran O’Leary and N. Peek 23:9

look back and tie existing developments together. How can we develop Machine-o-Matic
in a way that appeals to the research community?

6 Conclusion

In this paper, we demonstrated for the need for formalizing digital fabrication workflows.
We argue that integrating disparate parts of a workflow—including computer-aided design,
geometry processing, toolpathing, sensors, and machine design—into a common environment
would enable emerging groups of users to leverage fabrication technology. Through authoring
workflows as programs, we introduce clearer syntax and replicatabilty as end users are able
to share and modify existing workflows. Programs also afford static analysis, checking for
errors beofre machines run and possibly waste material, which is particularly important
for composing novel workflows. Finally, software-defined fabrication allows for quicker
prototyping and debugging of workflows while reducing the amount of time spent working
with low-level machine firmware. We aim to further develop and test Machine-o-Matic to
encourage a broader community of users to build fabrication workflows that work for their
own contexts.

References
1 KiCad. URL: http://kicad-pcb.org/.
2 Slic3r - Open source 3d printing toolbox. URL: https://slic3r.org/.
3 Tool Path Language. URL: https://tplang.org/.
4 Harshit Agrawal, Rishika Jain, Prabhat Kumar, and Pradeep Yammiyavar. FabCode: Visual

Programming Environment for Digital Fabrication. In Proceedings of the 2014 Conference
on Interaction Design and Children, IDC ’14, pages 353–356, New York, NY, USA, 2014.
ACM. event-place: Aarhus, Denmark. URL: http://doi.acm.org/10.1145/2593968.2610490,
doi:10.1145/2593968.2610490.

5 Shaowen Bardzell. Feminist HCI: Taking Stock and Outlining an Agenda for Design. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,
pages 1301–1310, New York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/
1753326.1753521, doi:10.1145/1753326.1753521.

6 Shaowen Bardzell, Jeffrey Bardzell, and Sarah Ng. Supporting Cultures of Making: Technology,
Policy, Visions, and Myths. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI ’17, pages 6523–6535, New York, NY, USA, 2017. ACM. URL:
http://doi.acm.org/10.1145/3025453.3025975, doi:10.1145/3025453.3025975.

7 Patrick Baudisch and Stefanie Mueller. Personal Fabrication. Foundations and Trends®
in Human–Computer Interaction, 10(3-4):165–293, 2017. URL: http://www.nowpublishers.
com/article/Details/HCI-055, doi:10.1561/1100000055.

8 Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-
elli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh Processing Tool. Euro-
graphics Italian Chapter Conference, page 8 pages, 2008. URL: http://diglib.eg.
org/handle/10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136, doi:
10.2312/localchapterevents/italchap/italianchapconf2008/129-136.

9 Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus,
Armando Solar-Lezama, and Wojciech Matusik. InverseCSG: Automatic Conversion of 3d
Models to CSG Trees. In SIGGRAPH Asia 2018 Technical Papers, SIGGRAPH Asia ’18,
pages 213:1–213:16, New York, NY, USA, 2018. ACM. URL: http://doi.acm.org/10.1145/
3272127.3275006, doi:10.1145/3272127.3275006.

10 Gecko Drive. Gecko drive systems, 2019. https://www.geckodrive.com/stepper-motor-
controls.html, accessed Aug 2019.

CVIT 2016

http://kicad-pcb.org/
https://slic3r.org/
https://tplang.org/
http://doi.acm.org/10.1145/2593968.2610490
http://dx.doi.org/10.1145/2593968.2610490
http://doi.acm.org/10.1145/1753326.1753521
http://doi.acm.org/10.1145/1753326.1753521
http://dx.doi.org/10.1145/1753326.1753521
http://doi.acm.org/10.1145/3025453.3025975
http://dx.doi.org/10.1145/3025453.3025975
http://www.nowpublishers.com/article/Details/HCI-055
http://www.nowpublishers.com/article/Details/HCI-055
http://dx.doi.org/10.1561/1100000055
http://diglib.eg.org/handle/10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136
http://diglib.eg.org/handle/10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136
http://dx.doi.org/10.2312/localchapterevents/italchap/italianchapconf2008/129-136
http://dx.doi.org/10.2312/localchapterevents/italchap/italianchapconf2008/129-136
http://doi.acm.org/10.1145/3272127.3275006
http://doi.acm.org/10.1145/3272127.3275006
http://dx.doi.org/10.1145/3272127.3275006

23:10 Machine-o-Matic

11 Gnea. Grbl v1.1 Configuration, April 2019. https://github.com/gnea/grbl, accessed Aug 2019.
12 Jennifer Jacobs and Leah Buechley. Codeable objects: computational design and digital

fabrication for novice programmers. pages 1589–1598. ACM, April 2013. URL: http://dl.
acm.org/citation.cfm?id=2470654.2466211, doi:10.1145/2470654.2466211.

13 Sorin Lerner, Stephen R. Foster, and William G. Griswold. Polymorphic Blocks: Formalism-
Inspired UI for Structured Connectors. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages 3063–3072, New York, NY, USA, 2015.
ACM. event-place: Seoul, Republic of Korea. URL: http://doi.acm.org/10.1145/2702123.
2702302, doi:10.1145/2702123.2702302.

14 Silvia Lindtner, Shaowen Bardzell, and Jeffrey Bardzell. Reconstituting the Utopian Vision of
Making: HCI After Technosolutionism. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, pages 1390–1402, New York, NY, USA, 2016. ACM.
URL: http://doi.acm.org/10.1145/2858036.2858506, doi:10.1145/2858036.2858506.

15 Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. Bidirectional Evaluation with Direct Ma-
nipulation. Proc. ACM Program. Lang., 2(OOPSLA):127:1–127:28, October 2018. URL:
http://doi.acm.org/10.1145/3276497, doi:10.1145/3276497.

16 Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman, and
Zachary Tatlock. Functional Programming for Compiling and Decompiling Computer-aided
Design. Proc. ACM Program. Lang., 2(ICFP):99:1–99:31, July 2018. URL: http://doi.acm.
org/10.1145/3236794, doi:10.1145/3236794.

17 openFrameworks, 2019. https://openframeworks.cc/, accessed Aug 2019.
18 ROS. Unified robot description format, 2019. URL: http://wiki.ros.org/urdf.
19 Thijs Roumen, Bastian Kruck, Tobias Dürschmid, Tobias Nack, and Patrick Baudisch. Mobile

Fabrication. In Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, UIST ’16, pages 3–14, New York, NY, USA, 2016. ACM. URL: http:
//doi.acm.org/10.1145/2984511.2984586, doi:10.1145/2984511.2984586.

20 Smoothieware. Modular, Open Source, High Performance G-code Interpreter and CNC
Controller., 2019. http://smoothieware.org/configuring-smoothie, accessed Aug 2019.

21 Synthetos. TinyG Configuration, April 2019. https://github.com/synthetos/TinyG, accessed
Aug 2019.

22 Verilog, 2019. URL: http://www.verilog.com/.
23 Karl D.D. Willis, Cheng Xu, Kuan-Ju Wu, Golan Levin, and Mark D. Gross. Interactive

Fabrication: New Interfaces for Digital Fabrication. In Proceedings of the Fifth International
Conference on Tangible, Embedded, and Embodied Interaction, TEI ’11, pages 69–72, New
York, NY, USA, 2011. ACM. URL: http://doi.acm.org/10.1145/1935701.1935716, doi:
10.1145/1935701.1935716.

http://dl.acm.org/citation.cfm?id=2470654.2466211
http://dl.acm.org/citation.cfm?id=2470654.2466211
http://dx.doi.org/10.1145/2470654.2466211
http://doi.acm.org/10.1145/2702123.2702302
http://doi.acm.org/10.1145/2702123.2702302
http://dx.doi.org/10.1145/2702123.2702302
http://doi.acm.org/10.1145/2858036.2858506
http://dx.doi.org/10.1145/2858036.2858506
http://doi.acm.org/10.1145/3276497
http://dx.doi.org/10.1145/3276497
http://doi.acm.org/10.1145/3236794
http://doi.acm.org/10.1145/3236794
http://dx.doi.org/10.1145/3236794
http://wiki.ros.org/urdf
http://doi.acm.org/10.1145/2984511.2984586
http://doi.acm.org/10.1145/2984511.2984586
http://dx.doi.org/10.1145/2984511.2984586
http://www.verilog.com/
http://doi.acm.org/10.1145/1935701.1935716
http://dx.doi.org/10.1145/1935701.1935716
http://dx.doi.org/10.1145/1935701.1935716

	Introduction
	Workflow: a Fabrication Task Made up of Digital and Physical Steps
	Reimagining Fabrication Workflows as Formal Programs

	Example Scenario
	System Architecture
	Related Work
	Next Steps and Open Questions
	Conclusion

